On infinite products of non-Archimedean measure spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

On the Non-archimedean Metric Mahler Measure

Recently, Dubickas and Smyth constructed and examined the metric Mahler measure and the metric näıve height on the multiplicative group of algebraic numbers. We give a non-Archimedean version of the metric Mahler measure, denoted M∞, and prove that M∞(α) = 1 if and only if α is a root of unity. We further show that M∞ defines a projective height on Q × /Tor(Q) as a vector space over Q. Finally,...

متن کامل

System of AQC functional equations in non-Archimedean normed spaces

‎In 1897‎, ‎Hensel introduced a normed space which does‎ ‎not have the Archimedean property‎. ‎During the last three decades‎ ‎theory of non--Archimedean spaces has gained the interest of‎ ‎physicists for their research in particular in problems coming‎ ‎from quantum physics‎, ‎p--adic strings and superstrings‎. ‎In this paper‎, ‎we prove‎ ‎the generalized Hyers--Ulam--Rassias stability for a‎ ...

متن کامل

Tropical Dolbeault Cohomology of Non-archimedean Spaces

In this survey article, we discuss some recent progress on tropical Dolbeault cohomology of varieties over non-Archimedean fields, a new cohomology theory based on real forms defined by Chambert-Loir and Ducros.

متن کامل

Non-archimedean Analytification of Algebraic Spaces

1.1. Motivation. This paper is largely concerned with constructing quotients by étale equivalence relations. We are inspired by questions in classical rigid geometry, but to give satisfactory answers in that category we have to first solve quotient problems within the framework of Berkovich’s k-analytic spaces. One source of motivation is the relationship between algebraic spaces and analytic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2002

ISSN: 0019-3577

DOI: 10.1016/s0019-3577(02)80003-9